RICHIESTA PER ATTIVAZIONE ASSEGNO DI RICERCA

Tutor: Prof. Vittorio Colombo

Titolo dell’assegno:
Studio di nuovi sistemi assistiti da plasma freddo per la decontaminazione/disinfezione in linea del packaging nel settore alimenti e bevande.
Design of processes assisted by cold atmospheric plasmas for the in-line decontamination/sterilization of materials in food packaging.

Sedi di attività:
CIRI-MAM – Centro Interdipartimentale di Ricerca Industriale Meccanica Avanzata e Materiali – Unità operativa Materiali Avanzati per la Progettazione e Applicazioni Fotoniche; DIN - Dipartimento di Ingegneria Industriale - Group for Industrial Applications of Plasmas Laboratorio (Via Terracini 24, 40131, Bologna, Italy): **Group for Industrial Applications of Plasmas** (http://plasmagroup.ing.unibo.it/)

Relazioni con enti universitari ed extra universitari su tematiche inerenti la ricerca:
- Sarong S.p.A.
- GEA PROCOMAC S.p.A.
- SACMI IMOLA S.C.
- CIRI-Agroalimentare (sede di Cesena)
- AlmaPlasma s.r.l. – Spin-off accademico partecipato da AlmaCube s.r.l.

Progetto di ricerca:
Il progetto di ricerca si sviluppa nell’ambito dell’azione POR FESR 14-20 Asse 1, Azione 1.2.2 - Bando per raggruppamenti di laboratori di ricerca. **ALTE COMPETENZE 2019 – “Studio di nuovi sistemi assistiti da plasma freddo per la decontaminazione/disinfezione in linea del packaging nel settore alimenti e bevande” (Rif.PA 2019-11469/RER – CUP: J44I19000340007)**

A livello regionale l’esistenza ormai consolidata della Rete Alta Tecnologia (con vari centri di ricerca e laboratori operanti nel settori agroalimentare) e quella più recente del CLUST-ER Agroalimentare (articolato nelle seguenti Value Chain, ciascuna con i propri obiettivi strategici: SOSFARM - Agricoltura sostenibile e di precisione; FoodQST - Qualità, sicurezza e tracciabilità nei processi e nei prodotti e nutrizione; SPES - Valorizzazione di sottoProdotti e scarti nel settore agrifood) e per quanto riguarda il contesto UNIBO la presenza del CIRI-Agrifood (articolato nelle UO: UO1–Safety e autenticità; UO2–Produzione primaria sostenibile; UO3–Qualità, nutrizione e salute; UO4–Processi e prodotti alimentari; UO5–Consumo e mercati) sono alla base della definizione di un ambiente di competenze, progetti e collaborazioni che garantiranno all’assegnista di ricerca formando di lavorare in un contesto estremamente vitale e caratterizzato da una copertura di competenze tecnico-scientifiche ad ampio spettro che insistono sui principali ambiti tecnologici della ricerca industriale nel settore agroalimentare.

Per caratterizzare l’ambito di questa proposta, può essere utile mettere in relazione gli orientamenti tematici e le traiettorie tecnologiche individuate nella S3 del 2014 con i nuovi obiettivi strategici per Value Chain FoodQST emersi dal Forum Agroalimentare del 2018, individuando il seguente percorso tematico: Orientamento tematico S3: Innovazione e sostenibilità nei processi e nei prodotti alimentari. Traiettorie Tecnologiche Regionali: Packaging innovativo e sostenibile; con forte fattore di correlazione con la Value Chain FoodQST - Qualità, sicurezza e tracciabilità nei processi e nei prodotti e nutrizione, in riferimento all’**OBIETTIVO STRATEGICO 4 – Alimenti con maggiore sicurezza, durabilità, impatto funzionale e qualitativo (favorire la produzione di alimenti sicuri e con caratteristiche qualitative e salutistiche finalizzate anche a fasce di consumatori**
specifici anche attraverso l’applicazione di soluzioni tecnologiche e di processo innovative) e all’OBIETTIVO STRATEGICO 5 – Innovazione dei processi tecnologici, impianti e materiali industriali, per aumentare la sostenibilità e la competitività dei prodotti alimentari.

In questo contesto i settori del meccano-alimentare e del packaging (innovativo e sostenibile) risultano coinvolti nelle traiettorie tecnologiche definite nella Strategia regionale di ricerca e innovazione per la specializzazione intelligente (S3) anche in alcune linee di sviluppo prioritarie per del Clust-ER Meccatronica e Motoristica, attraverso l’integrazione di tecnologie plasma in “macchine automatiche per packaging”.

L’attività prevista per questo assegno di ricerca è perfettamente centrata rispetto agli “ambiti tecnologici di sviluppo delle attività di ricerca industriale” del piano strategico del CIRI-MAM: “gli ambiti tecnologici di riferimento sono quelli […] dei materiali e dei rivestimenti/trattamenti superficiali, […] dei materiali per il packaging, dei processi plasma assistiti nel settore del packaging/food per aumentare shelf life e qualità dei prodotti, […].” Da ciò la decisione di presentare questa domanda con riferimento alle attività incentrate su CIRI-MAM. Ancora va detto che i “comparti industriali e le filiere di principale interesse per il laboratorio CIRI-MAM” includono le “macchine per il packaging”, tenuto conto che “per la trasversalità delle tematiche sviluppate sono però interessati anche” anche altri settori, tra cui quello agroalimentare.

Qualità, sicurezza e shelf life sono aspetti fondamentali del prodotto alimentare, fortemente influenzati dalle caratteristiche degli imballaggi e dei processi utilizzati per il confezionamento. Ne consegue una costante richiesta, da parte del comparto industriale, per lo sviluppo di nuovi processi che permettano di migliorare queste caratteristiche e che siano al contempo altamente sostenibili. Tra le fasi di processo più soggette alla ricerca di innovazioni col fine di aumentarne la competitività e la sostenibilità vi è quella della disinfezione/decontaminazione del packaging. Questa fase, che ha un impatto diretto sulla shelf-life degli alimenti ed il rischio biologico ad essi associato, viene ad esempio svolta nel settore beverage mediante l’ausilio di agenti chimici (principalmente H2O2 e/o acido peracetico) in fase liquida o vapore. I principali limiti di queste tecnologie sono il residuo di chemicals nel prodotto e l’elevato consumo di acqua per il risciacquo; è dunque evidente l’enorme impatto che avrebbe lo sviluppo di nuovi sistemi di decontaminazione non lascino residui chimici nel packaging, e dunque nel prodotto, e che minimizzino l’utilizzo di acqua.

Tra le tecnologie più promettenti per questo fine si collocano i plasmi freddi a pressione atmosferica, ottenuti sottometendo un gas ad un campo elettromagnetico sufficientemente elevato da produrre la ionizzazione, con la conseguente formazione di vari principi biocidi quali specie reattive dell’ossigeno e dell’azoto (O3, H2O2, OH, NOx) e radiazione ultravioletta. Questa tecnologia combina il vantaggio di essere dry con bassi costi di esercizio, temperature di esercizio inferiori a 40-50°C e la non necessità di approvvigionarsi e stoccare chemicals.

Il progetto di ricerca, collocato su di una linea di sviluppo tracciata negli ultimi anni dal Gruppo di Ricerca per le Applicazioni Industriali dei Plasmi in collaborazione con alcuni dei più importanti player industriali nel settore del packaging alimentare regionale, riguarderà pertanto lo sviluppo di nuove tecnologie plasma per la disinfezione in ambito food e beverage, con il fine di una futura loro validazione su impianti pilota (eventualmente messi a disposizione da enti industriali interessati al progetto).

L’assegnista collaborerà nello studio del processo plasma di disinfezione di materiali plastici termoformati per imballaggi alimentari e imballaggi per bevande (preforme, tappi e bottiglie) da microorganismi in forma planctonica o di spore. Ove tecnologicamente possibile per il coinvolgimento di partner industriali, si studieranno inoltre le possibili sinergie tra plasma e vapori/aerosol di acqua e perossido di idrogeno e si compareranno i risultati ottenuti con quelli offerti da tecnologie chimiche (quali quelle a perossido di idrogeno o acido peracetico) o basate su altre radiazioni non ionizzanti (UV etc.), per valutarne efficacia, sostenibilità economica ed impatto ambientale.
In ultimo, l’assegnista si occuperà della misurazione mediante tecniche Optical Absorption Spectroscopy (OAS) e Fourier Transform Infrared spectroscopy (FTIR) delle specie chimiche prodotte dalla scarica di plasma, al fine di correlarle con i risultati microbiologici ed identificare delle strategie di controllo (anche on-line) del processo.

Piano di attività:

La finalità generale del progetto di ricerca consiste nella valutazione delle potenzialità della tecnologia plasma freddo a pressione atmosferica come sistema di disinfezione di imballaggi per uso alimentare e beverage.

Gli specifici risultati attesi del progetto di ricerca sono:
- l’identificazione delle specie reattive prodotte nel plasma e la loro correlazione con i risultati del processo di disinfezione con il fine di individuare delle strategie di controllo (anche on-line);
- la definizione del grado di decontaminazione indotta dall’uso della tecnologia al plasma nel settore food and beverage, in particolare valutandone l’efficacia antimicrobica nella decontaminazione di contenitori, tappi e superfici da microorganismi in forma planctonica o di spore;
- la definizione del grado di decontaminazione della tecnologia al plasma nel settore food and beverage quando applicata in sinergia con l’iniezione di vapori/aerosol di acqua e perossido di idrogeno;
- la valutazione dei costi energetici associati al processo di disinfezione plasma e l’analisi delle possibili difficoltà/ rischi connessi con lo scale-up industriale di un impianto plasma verso applicazioni di mercato nell’industria del packaging, creando un diretto raccordo tra competenze accademiche e le esigenze industriali in accordo con l’obiettivo strategico n.5;
- l’analisi dell’impatto ambientale del processo di disinfezione plasma assistito, con particolare riferimento agli aspetti di consumo energetico, eventuali consumi di acqua/chemicals nel caso dell’utilizzo di vapori/aerosol di acqua e perossido di idrogeno, e di impatto sugli ambienti di lavoro.

Group for Industrial Applications of Plasmas laboratory equipments:
(http://plasmagroup.ing.unibo.it/)

Industrial, environmental and biomedical applications are characterized by the common need of innovative and advanced treatments aimed at enhancing specific properties of different materials (from polymers to metals, from ceramics to biological substrates). Plasma is an ionized gas, able to conduct heat and electricity, consisting of electrons, neutrals, radicals and ions. The possibility of precisely controlling plasma chemical and physical characteristics makes plasma technology the ideal candidate to solve such a varied range of needs.

The group has a strong experience in the industrial applications of plasmas, developed over more than twenty years of research in the field. A large number of research activities concern processes assisted by thermal plasmas (T=10-30kK), while an increasing volume of research activities concerns non-thermal plasmas (T lower than 40°C) at atmospheric pressure, with particular interest for the treatment of materials and biological applications. The research approach characterizing the activities of the group integrates plasma fundamental studies with experiments, diagnostics and computer modelling for process and devices design and optimization.

Non-thermal plasma sources and electrical generators for material treatment and biomedical applications:
- Plasma source NEOPLAS – KINPEN for the treatment of biological and thermosensitive materials.
- Plasma source RF – Plasma Tube for the treatment of biological and thermosensitive materials.
- Plasma source HV pulse – FE-DBD (Floating Electrode Dielectric Barrier Discharge) for the treatment of biological and thermosensitive materials.
- Plasma source HV pulse – DBD-Jet (Dielectric Barrier Discharge) for the treatment of biological and thermosensitive materials.
- Plasma source for surface modification in controlled atmosphere.
- System FB Plasma 3D for processes on materials, such as materials activation and organic and inorganic films deposition.
- Direct and indirect DBD plasma sources for surface sanitation, medical applications and material processing.
- Corona jet plasma sources for coating deposition and nanoparticle synthesis.
- High voltage pulse generator FPG 20-1 NMK, FID GmbH (rise time, 2-3 ns) for the treatment of biological and thermosensitive materials.
- High voltage pulse generator FPG 20-1PM, FID GmbH (rise time, 110-130 ps) for the treatment of biological and thermosensitive materials.
- High voltage pulse generator PG100-3D – Plasma Power LLC (rise time, us) for the treatment of biological and thermosensitive materials.
- RF generator BDS300Black – BDISCOM s.r.l. (13.56 MHz, 300 W) for the treatment of biological and thermosensitive materials.
- RF generator Stolberg, 13.56 MHz, 1kW, for the treatment of biological and thermosensitive materials.
- RF generator Comet, 81.36 MHz, 1 kW, for the treatment of biological and thermosensitive materials.
- HVAmplifier (Trek model 30/20-H-CE, ± 30 kV, 20 mA) connected to a waveform generator (Stanford Research model DS335, 3 MHz), for the treatment of biological and thermosensitive materials.
- High voltage pulse generator AlmaPULSE, AlmaPlasma srl (AC 1-20 kVp, 1-5/9-20 kHz, rise time 8 us) for the treatment of biological and thermosensitive materials.
- High voltage Dielectric Barrier Corona and Plasma Discharge Resonant Driver for treatment of materials.
- Cost Reference Microplasma Jet
- Semi-automatic system AlmaPLUS, AlmaPlasma srl equipped with a 3-axis CNC pantograph and a remotely controlled high voltage pulsed generator AlmaPULSE, AlmaPlasma srl. The system includes a remotely controlled liquid and gas console composed of four multifluid/multirange mass flow controllers EL-FLOW, Bronkhorst, a liquid flow meter miniCORI flow, Bronkhorst and a controlled evaporation mixer CEM, Bronkhorst.

Material processing and characterization:
- System for measurement of water contact angle and surface energy (Kruss DSA4)
- System for Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) spectroscopy (Agilent Cary 660 FTIR spectrometer).
- Scanning electron microscope (SEM) (Phenom ProX) equipped with EDX spectroscopy for the chemo-morphological analysis of solid.
- Gold sputter coater (SC7620 Mini Sputter System, Quorum technologies).
- Chemical laminar flow hood.
- Glove box for the safe handling of samples in a controlled atmosphere.
- Bubbler for monomeric suspension to produce gas carrying the monomer.
- Nebulizer system for nanocolloids to produce aerosol carrying nanoparticles.
- System for the measurement of specific surface area in solid samples by means of BET technique (NOVA 2200e, Quantachrome Instrument), for the characterization of nanopowders.

Raizer Advanced Plasma Diagnostics Laboratory:
- Acquisition systems for electrical data (oscilloscope, high voltage and current probes).
- High-speed camera NAC-MEMRECAM K3 for visualization and diagnostics of plasma assisted processes.
- High-speed camera NAC-MEMRECAM GX3 for visualization and diagnostics of plasma assisted processes.
- Diagnostics system for Schlieren imaging of plasma assisted processes.
- Optical Emission Spectroscopy system: UV optical fibres, fused silica lens for optical setup, triple grating high resolution spectrometer, integrated and single photon counting detectors.
- Optical Absorption Spectroscopy system: broad spectra lamp, different low power LEDs + spectroscopic system adopted for emission spectroscopy.
- Enthalpy probe for temperature, velocity and composition measurement in thermal plasmas.
- CCD camera PIXIS 400 Princeton instruments adopted for the investigation of transient plasma phenomena.
- Photo multiplier tube (PMT) for the investigation of time-dependent phenomena (e.g. kinetics of plasma-produced reactive species in gas phase).
- Optical band-pass filters for spectral-resolved imaging.
- Fiber optic sensor (AccuSens) for temperature measurement in non-thermal plasmas.
- High precision infrared portable thermometer OPTRIS.
- Camera and lens NIKON for scientific publications.
- Superzoom lens for Edmund optics K2 iCCD.
- Fluoroskan Ascent 100-240V, 50/60 Hz.

Langmuir-Tesla BioPlasma laboratory:
Biological laboratory equipped for cultivation and manipulation of pathogens up to class 2, licensed by the Office for protection and prevention (Document of Risk Assessment sent to AUSL on March 15, 2013) which include:
- Laminar flow hood Class 2.
- Fridge-freezer for storage of bacteria and pathogens.
- Incubator for bacterial growth on plates.
- Heated and vibrant support for the growth of bacteria in culture medium.
- Autoclave for sterilization of non-disposables.
- Demineralizer.
- Movable hood for manipulation of chemical compounds.
- Waste storage system authorized by School of Engineering and Architecture – waste management office.

Golgi BioPlasma-Cell laboratory
Biological laboratory fully equipped for storage, growth and analysis of eukaryotic cell lines. The laboratory includes:
- Laminar flow hood Class 2.
- Fridge, freezer and liquid nitrogen canister for storage of cell lines.
- CO2 incubator for cell growth.
- Refrigerated laboratory centrifuge.
- Autoclave for liquid and solid sterilization.
- Thermomixer for controlled heating of cells and culture broths.
- Microplate reader for cell analysis, e.g. MTT and ELISA assay.
- Spectrophotometer for chemical analysis.
- Inverted microscopy for morphological analysis.